
CS421 Lecture 6CS421 Lecture 6

▶ Today’s class▶ Today s class
▶Regular Expressions

▶Ocamllex▶Ocamllex

▶ These slides are based on slides by Elsa Gunter, Mattox Beckman



Overview of OcamllexOverview of Ocamllex



Regular ExpressionsRegular Expressions

▶ A regular expression is one of▶ A regular expression is one of
▶ , aka “”

▶ ‘a’ for any character a▶ a  for any character a

▶ r1 r2, where r1 and r2 are regular expr’s

▶ r | r here r and r are reg lar e pr’s▶ r1 | r2, where r1 and r2 are regular expr’s

▶ r*, where r is a reg expr’s

Ø▶Ø  



Regular Expression ExamplesRegular Expression Examples



Regular Expression ExamplesRegular Expression Examples

▶ Keywordsy

▶ Operators

▶ Identifiers

▶ Int literals



AbbreviationsAbbreviations



Regular Expression ExampleRegular Expression Example

▶ Float-point Literal▶ Float point Literal



Regular Expression ExampleRegular Expression Example

▶ New-Style Comments (//)▶ New Style Comments (//)

▶ Old-Style Comments (/* … */)



Implementing Reg ExprImplementing Reg Expr

▶ Translate RE’s to NFA’s then to DFA’s▶ Translate RE s to NFA s, then to DFA s



Lexing with Reg ExprsLexing with Reg Exprs

▶ Create one large RE:▶ Create one large RE:

Th dd i▶ Then add actions



(cont )(cont.)

▶ Ambiguous cases:▶ Ambiguous cases:

▶ Two tokens found, one longer

▶ Two tokens found, the same length



General InputGeneral Input

{ header }{ header }
let ident = regexp ...
rule entrypoint [arg1 argn] = parserule entrypoint [arg1... argn] = parse    

regexp { action } 
|| ... 
| regexp { action }

and entrypoint [arg1... argn] =  parse ...and ...
{ trailer }



Ocamllex InputOcamllex Input

▶header and trailer contain arbitrary▶header and trailer contain arbitrary
ocaml code put at top an bottom of 
<fil > l<filename>.ml

▶ let ident = regexp ...  Introduces identg p
for use in later regular expressions



MechanicsMechanics

▶ Put table of regular expressions and▶ Put table of regular expressions and 
corresponding actions (written in ocaml) 
into a fileinto a file

<filename>.mll

▶ Call▶ Call
ocamllex <filename>.mll

P d O l d f l i l▶ Produces Ocaml code for a lexical 
analyzer in file <filename>.ml



Sample InputSample Input

rule main = parsep
['0'-'9']+                { print_string "Int\n"}

| ['0'-'9']+'.'['0'-'9']+ { print_string "Float\n"}
| [' ' ' '] { i i "S i \ "}| ['a'-'z']+                { print_string "String\n"}
| _                          { main lexbuf }
{{
let newlexbuf = (Lexing.from_channel stdin) in

print string "Ready to lex.\n";p t_st g eady to e ;
main newlexbuf

} 



Ocamllex InputOcamllex Input

▶<filename> ml contains one lexing▶<filename>.ml contains one lexing 
function per entrypoint
▶Name of function is name given for▶Name of function is name given for 

entrypoint
▶Each entry point becomes an Ocaml▶Each entry point becomes an Ocaml 

function that takes n+1 arguments, the 
extra implicit last argument being of typeextra implicit last argument being of type 
Lexing.lexbuf

▶arg1 argn are for use in action▶arg1... argn are for use in action



Ocamllex Regular ExpressionOcamllex Regular Expression

▶ Single quoted characters for letters: ‘a’▶ Single quoted characters for letters: a

▶ _: (underscore) matches any character

f i l “ d f fil ” k▶ eof: special “end_of_file” marker

▶ Concatenation:  concatenation

▶ “string”: concatenation of sequence of 
characters

▶ e1 | e2 : choice



Ocamllex Regular ExpressionOcamllex Regular Expression

▶ [c1 - c2]: choice of any character▶ [c1 c2]: choice of any character 
between first and second inclusive, as 
determined by character codesdetermined by character codes

▶ [^c1 - c2]: choice of any character 
NOT in setNOT in set

▶e*: same as before
▶e+: same as e e*
▶e?: option - was e1 | εe?: option was e1 | ε



Ocamllex Regular ExpressionOcamllex Regular Expression

▶e # e : the characters in e but not in▶e1 # e2: the characters in e1 but not in 
e2; e1 and e2 must describe just sets 

f h tof characters

▶ ident: abbreviation for earlier reg exp g p
in let ident = regexp

▶ e as id: binds the result of e to id to▶ e1 as id: binds the result of e1 to id to 
be used in the associated action



Ocamllex ManualOcamllex Manual

▶ More details can be found at▶ More details can be found at

h // l i i f / b/d / lhttp://caml.inria.fr/pub/docs/manual-
ocaml/manual026.html



Example: test mllExample: test.mll

{ type result = Int of int | Float of float | String{ type result  Int of int | Float of float | String 
of string }

let digit = ['0'-'9']let digit  [ 0 9 ]
let digits = digit +
let lower case = ['a' 'z']let lower_case = [ a - z ]
let upper_case = ['A'-'Z']
l t l tt | llet letter = upper_case | lower_case
let letters = letter +



Example: test mllExample: test.mll

rule main = parsep
digits'.'digits as f  { Float (float_of_string f) }

| digits as n              { Int (int_of_string n) }| g { ( _ _ g ) }
| letters as s             { String s}
| _ { main lexbuf }
{ let newlexbuf = (Lexing.from_channel stdin) in

print_string "Ready to lex.";
print_newline ();
main newlexbuf  }



ExampleExample

# #use "test.ml";;;;
…
val main : Lexing.lexbuf -> result = <fun>g
Ready to lex.
hi there 234 5.2
- : result = String "hi"
What happened to the rest?!?



ExampleExample

# let b = Lexing.from channel stdin;;# let b  Lexing.from_channel stdin;;
# main b;;
hi 673 therehi 673 there
- : result = String "hi"
# i b# main b;;
- : result = Int 673
# main b;;
- : result = String "there"



ProblemProblem

▶ How to get lexer to look at more than the▶ How to get lexer to look at more than the 
first token?

▶ Answer 1: repeatedly call lexing function▶ Answer 1: repeatedly call lexing function

▶ Answer 2: action has to tell it to --
i ll V l f i i k lirecursive calls.  Value of action is token list 

instead of token.

▶ Note: already used this with the _ case



ExampleExample

rule main = parserule main  parse
digits '.' digits as f { Float (float_of_string f)

:: main lexbuf}:: main lexbuf}
| digits as n          { Int (int_of_string n) :: 

i l b f }main lexbuf }
| letters as s         { String s :: main lexbuf}
| eof                    { [] }
| _                       { main lexbuf }



Example ResultsExample Results

Ready to lexReady to lex.

hi there 234 5.2

l li [S i "hi" S i " h " I- : result list = [String "hi"; String "there"; Int 
234; Float 5.2]

# 

Used Ctrl-d to send the end-of-file signal



Dealing with CommentsDealing with Comments

First Attemptp
let open_comment = "(*"
let close_comment = "*)"_ )
rule main = parse

digits '.' digits as f { Float (float_of_string f) 
:: main lexbuf}

| digits as n         { Int (int_of_string n) :: 
main lexbuf }

| letters as s         { String s :: main lexbuf}



Dealing with CommentsDealing with Comments

| open comment { comment lexbuf}| open_comment { comment  lexbuf}

| eof { [] }

| { main lexbuf }| _ { main lexbuf }

and comment = parse

close comment { main lexbuf }close_comment { main lexbuf }

| _                           { comment lexbuf }



Dealing with Nested CommentsDealing with Nested Comments

rule main = parse …p
| open_comment { comment 1 lexbuf}
| eof { [] }
| { i l b f }| _                          { main lexbuf }

and comment depth = parse
open comment { comment (depth+1) lexbuf }open_comment { comment (depth+1) lexbuf }

| close_comment { if depth = 1
then main lexbuft e a e bu
else comment (depth - 1)

lexbuf }
| { t d th l b f }| _                  { comment depth lexbuf }


