CS421 Lecture 6

> Today’s class
> Regular Expressions
> Ocamllex

» These slides are based on slides by Elsa Gunter, Mattox Beckman

Overview of Ocamllex

Regular Expressions

> A regular expression is one of
> €,aka ™’
> ‘a’ for any character a
> 1, I,, Where r, and r, are regular expr’s
> r, | r,, where r, and r, are regular expr’s
> r*, where r is a reg expr’s
>

Regular Expression Examples

Regular Expression Examples

» Keywords
» Operators

» |dentifiers

> Int literals

Abbreviations

Regular Expression Example

> Float-point Literal

Regular Expression Example

> New-Style Comments (//)

> Old-Style Comments (/* ... */)

Implementing Reg Expr

» Translate RE’s to NFA's, then to DFA’s

Lexing with Reg Exprs

> Create one large RE:

» Then add actions

> Ambiguous cases:
> Two tokens found, one longer

» Two tokens found, the same length

General Input

{ header}
let /dent= regexp ...
rule entrypoint|arg]l... argn] = parse
regexp{ action}

| ...

| regexp { action }
and entrypoint|arg]... argn] = parse ...and ...
{ traller}

Ocamllex Input

> headerand trai/ler contain arbitrary
ocaml code put at top an bottom of
<filename>.ml

> let /dent = regexp ... Introduces /dent
for use in later regular expressions

Mechanics
» Put table of regular expressions and
corresponding actions (written in ocaml)
into a file
<filename>.mll

» Call
ocamllex <filename>.mll

» Produces Ocaml code for a lexical
analyzer in file <filename>.m|

Sample Input

rule main = parse

'0-"9']+ { print_string "Int\n"}

'0-"9"+.T'0-'9']+ { print_string "Float\n"}

'a'-'z']+ { print_string "String\n"}
{ main lexbuf }

{

let newlexbuf = (Lexing.from_channel stdin) in
print_string "Ready to lex.\n";
main newlexbuf

Ocamllex Input
> <filename>.ml contains one lexing
function per entrypoint

» Name of function is name given for
entrypoint

» Each entry point becomes an Ocaml
function that takes 7+1 arguments, the
extra implicit last argument being of type
Lexing.lexbuf

> argl... argn are for use in action

Ocamllex Regular Expression

» Single quoted characters for letters: ‘a’
> : (underscore) matches any character
» eof: special “end_of file” marker

» Concatenation: concatenation

> “string’: concatenation of sequence of
characters

> e, | e,: choice

Ocamllex Regular Expression

> [c, - ¢ choice of any character
between first and second inclusive, as
determined by character codes

> ["c, - ¢]: choice of any character
NOT in set

> & same as before
> e+ same as e &
> &?. option -was e, | ¢

Ocamllex Regular Expression

> e, # e.. the characters in e, but not Iin
e, e,and e, must describe just sets
of characters

> /dent. abbreviation for earlier reg exp
in let /dent = regexp

> e,as /d. binds the result of e,to /dto
be used In the associated action

Ocamllex Manual

» More details can be found at

http://caml.inria.fr/pub/docs/manual-
ocaml/manual026.htm|

Example: test.mll

{ type result = Int of int | Float of float | String
of string }

et digit = ['0'-'9']

et digits = digit +

et lower_case = ['a'-'Z]

et upper_case =['A'-'Z']

et letter = upper_case | lower_case
et letters = letter +

Example: test.mll

rule main = parse
digits'.'digits as f { Float (float_of string f) }

digits as n { Int (int_of_string n) }
letters as s { String s}
_{ main lexbuf }

{ let newlexbuf = (Lexing.from_channel stdin) in
print_string "Ready to lex.";
print_newline ();
main newlexbuf }

#use "test.ml™:;

val main : Lexing.lexbuf -> result = <fun>
Ready to lex.

hi there 234 5.2
- . result = String "hi"
What happened to the rest?!?

let b = Lexing.from_channel stdin;;
main b;;

hi 673 there

- . result = String "hi"

main b;;

- result=Int 673

main b;;

- . result = String "there"

Problem

> How to get lexer to look at more than the
first token?

> Answer 1: repeatedly call lexing function

» Answer 2: action has to tell it to --
recursive calls. Value of action is token list
instead of token.

> Note: already used this with the _ case

rule main = parse
digits '." digits as f { Float (float_of string f)
.. main lexbuf}

| digits as n { Int (int_of_string n) ::
main lexbuf }
letters as s { String s :: main lexbuf}
eof {{}
_ { main lexbuf }

Example Results

Ready to lex.

hi there 234 5.2

- . result list = [String "hi"; String "there"; Int
234; Float 5.2]

#

Used Ctrl-d to send the end-of-file signal

Dealing with Comments

First Attempt
let open_comment = "(*"
let close_comment = "*)"
rule main = parse
digits '." digits as f { Float (float_of_string f)
.. main lexbuf}
| digits as n { Int (int_of_string n) ::
main lexbuf }
| letters as s { String s :: main lexbuf}

Dealing with Comments

open_comment { comment lexbuf}
eof {{}
_ { main lexbuf }

and comment = parse
close_comment { main lexbuf }
| _ { comment lexbuf }

Dealing with Nested Comments

rule main = parse ...
open_comment { comment 1 lexbuf}
eof {{l}
_ { main lexbuf }
and comment depth = parse
open_comment { comment (depth+1) lexbuf }
| close_comment { if depth =1
then main lexbuf

else comment (depth - 1)
lexbuf }

{ comment depth lexbuf }

